siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis

نویسندگان

  • Ping Sun
  • Wei Huang
  • Lin Kang
  • Mingji Jin
  • Bo Fan
  • Hongyan Jin
  • Qi-Ming Wang
  • Zhonggao Gao
چکیده

An ideal carrier that delivers small interfering RNA (siRNA) should be designed based on two criteria: cellular-mediated internalization and endosomal escape. Poly(histidine-arginine)6(H6R6) peptide was introduced into chitosan (CS) to create a new CS derivative for siRNA delivery, 6-polyarginine (R6) as cell-penetrating peptides facilitated nanoparticle cellular internalization has been proved in our previous research, and 6-polyhistidine (H6) mediated the nanoparticle endosome escape resulted in the siRNA rapid releasing into tumor cytoplasm. H6R6-modified CS nanoparticles showed higher transfection efficiency and better endosomal escape capacity compared to ungroomed CS nanoparticle in vitro. Noticeably, H6R6-modified CS nanoparticles effectively inhibited tumor cell growth and metastases in vivo and significantly improved survival ratio. Therefore, we concluded that H6R6-modified CS copolymer can act as an ideal carrier for siRNA delivery and as a promising candidate in breast cancer therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis

Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid...

متن کامل

Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system

As a potent therapeutic agent, small interfering RNA (siRNA) has been exploited to silence critical genes involved in tumor initiation and progression. However, development of a desirable delivery system is required to overcome the unfavorable properties of siRNA such as its high degradability, molecular size, and negative charge to help increase its accumulation in tumor tissues and promote ef...

متن کامل

Synthesis and characterization of ciprofloxacin loaded histidine modified chitosan nanoparticle for eradication of Pseudomonas aeroginosa biofilm

Background: Pseudomonas aeruginosa biofilm is one of the problems in antibiotic treatment of infections. Nanomedicines such as chitosan can carry multiple drugs and improve the therapeutic effects of antibiotics. Objectives: The study aimed to synthesis and characterization of ciprofloxacin loaded chitosan nanoparticle for eradication biofilm of P. aeroginosa. Methods: Cipro-CS microparticles...

متن کامل

Anti-cancer and anti-immunomodulatory properties of novel Arteether in Folic acid-Chitosan-Fe3O4 composite nanoparticle for treatment of breast cancer

Goal: The potent anti-cancer activity of Arteether (ARE) has been the focus of many studies. However, the hydrophobic property of this drug limits its application. To increase the bioavailability of ARE, we formulated a nanosystem (NS) of folic acid (FA), chitosan (CS) and Fe3O4 for delivery of ARE against breast cancer. Material and Methods: The CS coated Fe3O4 was synthesized by co-precipitat...

متن کامل

Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment.

A single nanoparticle platform has been developed through the modular and controlled layer-by-layer process to codeliver siRNA that knocks down a drug-resistance pathway in tumor cells and a chemotherapy drug to challenge a highly aggressive form of triple-negative breast cancer. Layer-by-layer films were formed on nanoparticles by alternately depositing siRNA and poly-l-arginine; a single bila...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017